The Triangle Inequality Theorem

Theorem 1:

The sum of the lengths of any two sides of a triangle must be greater than the third side.

$A C+C B>A B \quad 5+3 \times 7 \quad \begin{aligned} & \text { If these inequalities are } \\ & \text { NOT true, yon do not }\end{aligned}$
$C B+A B>A C \quad 3+7>5$ hare a triangle!

Example

Suppose we know the lengths of two sides of a triangle, and we want to find the "possible" lengths of the third side.

9
According to our theorem, the following 3 statements must be true:

$5+x>9$	$5+9>x$	$x+9>5$
So, $x>4$	S0, $14>x$	$\mathrm{S} 0, \mathrm{x}>-4$
		(foreal infunation is ginad here since the lengtro of he sida muat bepositive)

Putting these statements together, we get that x must be greater than 4 , but less than 14 . So any number in the range $4<x<14$ can represent the length of the missing side of our triangle.

