A Table

This is a way of organizing equivalent ratios.

To determine whether the ratios are proportional, simply divide **y** ÷ **x** to get the constant!

Example: (All ratios have a constant unit rate of 3:1)

Y	\times
6	2
9	ယ
15	5 10
30	10

An Equation

An equation of a proportional relationship (direct variation) is written in the form of y = kx.

K represents the

To get this constant (unit rate), $\sum_{k=\frac{y}{x}}^{k=\frac{y}{x}}$

A Graph

A graph of a proportional relationship MUST:

2

You Try! Find the constant (unit rate):

~	×
12	ω
16	4
44	-1
80	20

You Try! Find the constant (unit rate):

<	×
2	1/2
ω	3/4
00	2
20	5

Examples:

In the equation, y = 8x, the constant (unit rate) is 8.

In the equation $14 = k \cdot 2$, the constant (unit rate) is 7.

You Try! Find the constants!

$$y = \frac{1}{2}x$$
 $k = \frac{1}{2}$

Example: The constant below is 30 (miles per hour).

How do you get that?

	56	
OR	s) See the point (,	1) Find y when $x=1$.

2) Find any point on the the line, Divide y ÷ x.
ALL labeled points have a constant of 30!