Unit 4 Geometry

Dear Parents,
Below is information regarding Unit 4, Geometry. Look for additional newsletters for future units.

Geometry

By the end of this unit, students will be able to:

- Draw geometric shapes with given conditions (focus on triangles).
- Describe 2-D figures that result from slicing 3-D figures (prisms, pyramids, cones, cylinders \& spheres).
- Use the formulas for the area and circumference of a circle to solve problems.
- Use facts about supplementary, complementary, vertical and adjacent angles in a multi-step problem to find an unknown angle measure.
- Solve real-world problems involving area, volume and surface area of 2-D \& 3-D objects composed of triangles, quadrilaterals, polygons, cubes and right prisms.

Vocabulary

- Adjacent Angle: Angles in the same plane that have a common vertex and a common side, but no common interior points.
- Circumference: The distance around a circle.
- Complementary Angle: Two angles whose sum is 90 degrees.
- Congruent: Having the same size, shape and measure. $\angle A$ $\cong \angle B$ denotes that $\angle A$ is congruent to $\angle B$.
- Cross- section: A plane figure obtained by slicing a solid with a plane.
- Irregular Polygon: A polygon with sides not equal and/or angles not equal.
- Parallel Lines: Two lines are parallel if they lie in the same plane and they do not intersect. $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$ denotes that $\overleftrightarrow{A B}$ is parallel to $\overleftrightarrow{C D}$.
- Pi: The relationship of the circle's circumference to its diameter, when used in calculations, pi is typically approximated as 3.14; the relationship between the circumference (C) and diameter (d), $\frac{C}{d} \approx 3 \frac{1}{7}$ or 3.14
- Regular Polygon: A polygon with all sides equal (equilateral) and all angles equal (equiangular).
- Supplementary Angle: Two angles whose sum is 180 degrees.
- Vertical Angles: Two nonadjacent angles formed by intersecting lines or segments. Also called opposite angles.
http://intermath.coe.uga.edu/dictnary/homepg.asp http://www.teachers.ash.org.au/jeather/maths/dictio nary.html

Textbook Connection

McGraw Hill Georgia Math Grade 7: Chapter 8 Lessons 1-5; Chapter 9 Lessons 1-4, 6-8
Textbook Online: connected.mcgraw-hill.com

Web Resources

- http://www.mathsisfun.com/geometry/const ruct-ruler-compass-1.html
- http://www.cimt.plymouth.ac.uk/projects/m epres/book7/bk7i5/bk7 5i5.htm
- www.learner.org/channel/courses/learningm ath/geometry/session9/part c/index.html
- http://illuminations.nctm.org/LessonDetail.a spx? id=U166
- http://illuminations.nctm.org/ActivityDetail.a spx? $1 \mathrm{D}=116$ circumference
- http://www.uen.org/Lessonplan/preview.cgi ?LPid=23360 entire lesson plan area/circum.
- http://www.shodor.org/interactivate/activitie s/SurfaceAreaAndVolume/
- http://www.learner.org/interactives/geometr y/area.html surface area/volume
- http://www.analyzemath.com/Geometry/an gles.html
- http://www.mathsisfun.com/geometry/vertic al-angles.html
- http://www.mathsisfun.com/geometry/adjac ent-angles.html

1) Find the measure of angle x.

2) Draw an isosceles triangle with only one eighty degree angle. Is this the only possibility or can another triangle be drawn that will meet these conditions?
3)A triangle has an area of 6 square feet. The height is four feet. What is the length of the base?
3) What is the face shape created from cuts made parallel to the base of a rectangular pyramid?

4) First, find the missing angle measure of the bottom triangle ($180-30-30=120$). Since the 120 is a vertical angle to x, the measure of x is also 120°.
5) Through exploration, students recognize that the sum of the angles of any triangle will be 180 degrees.

6) One possible solution is to use the formula for the area of a triangle and substitute in the known values, then solve for the missing dimension. The length of the base is 3 ft .
7) If the pyramid shown is cut parallel to the base, the resulting face shape is a rectangle.

